首页

赞!月球导航的一种案例研究

来源:曹冲   2022-12-15 08:00:43

斯坦福大学的一个研究小组,对于月球导航进行了某种案例研究分析(Lunar Navigation: A Case Study Analysis),近日他们在《InsidGNSS》杂志上著文谈了一些思路,介绍了联合来自于地球-GPS的时间传递方法,值得参考。在阿波罗计划实施50多年后,世界正在进入“第二次太空竞赛”,不仅要让人类重返月球,还要进一步在月球上实现可持续的人类存在。在未来的十年里,美国国家航空航天局的阿尔忒弥斯任务将使第一位女性和有色人种登上月球南极。同时,10个国际航天机构还将执行40多项月球任务。此外,包括SpaceX和蓝色起源在内的商业航天公司将参与这一轮太空任务。即将进行的工作是致力于建造第一个支持远离地球的生命月球站,将成为未来深空任务成功的关键基石。随着载人和机器人活动的显著增加,未来的月球任务将需要能够月球上任何地方完成可靠和精确的定位、导航和授时(PNT)服务。

3de22546b74d52d8eba7491bf5e12abc

最近,美国国家航空航天局(NASA)戈达德太空飞行中心(GSFC)和欧洲航天局(ESA)将月球周围类似GPS的卫星星座概念化,命名为LunaNet(月球网)和Moonlight(月光)。相应地,对未来月球导航星座的设计进行了丰富的初步研究。这些NASA和ESA月球PNT星座将通过向月球用户提供全球PNT和通信服务,协助在月球上建立可持续人类存在的总体型努力。特别是,在接下来的十年中,这些举措旨在满足全球勘探界表达的需求,月球用户的目标定位精度优于50米。

虽然使用月球导航卫星系统(LNSS)的月球定位精度取决于各种不同的因素,其中一些关键因素如下:a)月球用户等效测距误差(UERE);b)星座大小;c)精度稀释(DOP);d)影响信号捕获和跟踪性能的最小接收功率;以及e)总体成本,这取决于来自地球的发射成本、进入月球稳定轨道的注入成本、机载设备及其维护成本。该研究根据月球UERE评估LNSS设计,计划将在未来的工作中探讨其他因素的评估。

对于在月球卫星星座中使用小卫星(SmallSat)平台以实现成本效益和快速部署,人们越来越感兴趣。与传统的地球GPS相比,设计基于SmallSat的LNSS面临着独特的挑战,导致了额外的设计限制,包括:LNSS卫星尺寸有限。SmallSat平台限制了其有效载荷能力,包括机载时钟的尺寸、重量和功率(SWaP)。鉴于较低的SWaP时钟往往具有更差的定时稳定性,时钟的SWaP限制直接影响发射的导航信号的测距精度;监测LNSS卫星的能力有限。鉴于月球上可建立的地面监测站数量有限,且地球上用于监测月球星座的资源有限,LNSS卫星需要较少的维护,包括较少的站务操作和时钟校正维护;和月球环境中轨道扰动增加。因为月球的质量分布非常不均匀,所以它的引力场比地球更各向异性。此外,地球的重力会对月球周围高海拔轨道上的卫星产生重大影响,从而限制了一组可行且稳定的月球轨道。

8c4e394bc38d30fb25cbca15b3a04da4

图1 地球上GPS卫星信号在月球上使用时被遮挡情况

然而,只有少数先前的工以独立的方式(即,不必依赖地球或月球的地面监测基础设施)解释了小卫星施加的SWaP约束。此外,这些工作没有根据月球轨道类型和机载时钟等级来估计月球UERE及其变化。与为地球GPS卫星定义的UERE度量类似,月球UERE提供了有关卫星级LNSS设计的关键见解,因为它表征了LNSS卫星发射信号的测距精度,从而影响了月球用户实现的位置精度。从用于地面应用的GPS时间传输技术中汲取灵感,在这项工作中,利用传统的地球GPS信号来缓解设计基于SmallSat的LNSS的挑战。特别是,可以执行来自地球GPS的时间传输,以校正LNSS卫星上的低级时钟,从而减少在月球上安装和维护地面站的需要和/或安排与地球地面站的一对一通信的需要。虽然地球GPS在近地空间应用中的应用得到了很好的研究,但将地球GPS信号用于月球卫星并不简单。这是因为地球GPS发射天线指向地球,如图1所示,从而导致其主瓣的主要部分被地球遮挡。因此,如图1所示,在月球轨道上,地球GPS信号从位于地球远端的地球GPS卫星的旁瓣和主瓣的未遮挡的小部分接收。由于地球和月球的掩星作用,地球GPS卫星只能间歇性使用。此外,由于接收到的载波噪声密度(C/N0)取决于发射天线功率和自由空间路径损耗,因此地球GPS信号在距地球约385000公里的月球距离处被大大衰减。

与此同时,在将地球GPS服务体扩大到包括月球空间用户方面取得了重大进展。NASA GSFC率先开发了导航器,这是一种完全符合太空飞行要求的GNSS接收器,能够跟踪非常微弱的地球GPS信号。导航器计划于2023年在月球GNSS接收器实验期间在月球上进行测试,这将是首个在月球表面的GNSS定位装置。同样,SpacePNT开发了一款名为NAVIMOON(导航月球)的高灵敏度星载GNSS接收机,该接收机将搭载ESA的月球探路仪绕月运行。它将在月球轨道上执行第一次GNSS定位解。

d2d552a754c65c17eddc4d9b90e5bf42

2.LNSS设计使用来自地球GPS的时间传递

研究者建议设计一个基于SmallSat的LNSS,该LNSS具有来自地球GPS的时间传输,其中每个LNSS卫星将监听地球GPS已经广播的信号,并处理这些信号以用于定时校正,如图2所示。我们设计了一个定时滤波器,当地球GPS信号可用时,它可以校正LNSS卫星上的低级时钟。当地球GPS信号不可用时,我们会及时向前传播这些时钟估计值。我们开发了一个地球GPS连续中断周期(ECOP)度量,以分析地球GPS对机载时钟定时稳定性的可见性影响。还设计了月球UERE度量的数学公式,该公式与均方根(RMS)定时误差成比例,以分析LNSS卫星的测距精度。研究者进行了广泛的案例研究分析,以说明利用地球GPS时间传递的LNSS设计的机载时钟和轨道类型的不同设计考虑之间的权衡。并且提出的地球GPS到LNSS时间传输技术减轻了定时稳定性的要求,相应地,也减轻了机载时钟的SWaP。在任何LNSS卫星上,所提出的定时滤波器保持由时钟偏置和漂移组成的二维状态向量。当执行地球GPS测量更新时,通过利用LNSS卫星的可用星历表中的位置辅助信息来制定测量残差向量。基于接收机跟踪误差、地球GPS UERE和可用LNSS卫星星历表中的预期误差(通过星载轨道确定),将测量协方差建模为时间相关对角矩阵。

结论。设计了一个地球GNSS到LNSS的时间传输架构,通过利用地球GPS信号提供定时校正,减轻了机载时钟的SWaP要求。此外,还研究了基于SmallSat的LNSS的设计考虑因素,包括机载时钟等级和月球轨道类型,以最佳地利用间歇性可用的地球GPS信号来减少月球UERE。事实上,月球UERE是决定LNSS为未来月球任务提供的导航性能的关键组件之一。通过分析多个案例研究,已经证明了较低的SWaP星载时钟和更容易维护的月球轨道可以实现理想的月球UERE,这可以在LNSS星座的DOP足够低的情况下满足优于50m的目标定位精度。研究者将扩展此分析,以设计完整的基于SmallSat的LNSS星座,该星座利用地球GPS时间传递,以实现月球任务所需的PNT性能。

相关新闻